ð å æ°åè§£ãæèšã§ããªãïŒâæ £ãâã§åŸæã«ãªã3ã¹ããã
ãã¯ããã«ã
å æ°åè§£ã£ãŠãå ¬åŒãèŠããªãããããã¿ãŒã³ãå€ããããã£ãŠæãããã¡ã§ãããå®éã¯æèšãããªããŠâæ £ãâã®åé¡ã§ãã
èªåèªèº«ããå ¬åŒãäžžæèšãããšããããã¯ããšã«ããåé¡ãè§£ããŠãè§£ããŠãè§£ããŠâŠâŠèªç¶ãšâåâããã¿èŸŒãã ã¿ã€ãã§ãã
ã§ãçåŸãããèŠãŠãããšã
ãããªæ©ã¿ãæã€åãå°ãªããããŸããã
ããã§ä»åã¯ãå æ°åè§£ãâæ £ãâã§åŸæã«ããããã®å ·äœçãª3ã¹ãããã玹ä»ããŸãã
ãã¹ããã1ïŒåå¥ã«åé¡ããŠâèŠåãâãã€ããã
ãŸãã¯ããã¡ãæ··ããã§ç·Žç¿ããªãããšã倧åã§ãã
以äžã®ããã«åããšã«åããŠã10åãã€ç·Žç¿ããŠã¿ãŸãããã
âŒäŸïŒ
ã»å ±éå æ°ã§ãããã¿ã€ã â 3x² + 6x ïŒ 3x(x + 2)
ã»a² â b² ã®ãã¿ãŒã³ â x² â 9 ïŒ (x + 3)(x â 3)
ã»ax² + bx + c å â 2x² + 5x + 2 ïŒ (2x + 1)(x + 2)
èŠãç¬éã«ãã©ã®åããã倿ããåãè²ã¡ãŸãã
ãã¹ããã2ïŒå±éãšã®âåŸåŸ©âã§æ§é ãçè§£ããã
ãå æ°åè§£ã¯å±éã®éæäœããšããèšãããŸãããããã宿ããã«ã¯âåŸåŸ©ç·Žç¿âã广çã§ãã
ããæ¹ã¯ç°¡åã
ãã®ãè¡ã£ãŠâæ»ããäœæ¥ã§ãããªããããªãã®ãïŒããè ã«èœã¡ãŠããŸãã
ãã¹ããã3ïŒèšèã§èª¬æããŠã¿ãïŒèšèªåïŒã
èªåã§ããªãããå æ°åè§£ã§ããã®ãïŒãããäžèšã§æžããŠã¿ãŸãããã
âŒäŸïŒ
ããŸãå ±éå æ°ã§ããã£ãŠããã®ããšå ¬åŒã䜿ã£ãŠåè§£ããã
ãã®èšèªåã«ãã£ãŠãèªåã®æèã®é åºãæŽçãããåçŸæ§ãé«ãŸããŸãã
ããŸãšãïŒçµå±âæ £ãâã ãã©ãæ £ãæ¹ã«å·®ãããã
å æ°åè§£ãåŸæãªåã¯ãå¿ ãããæèšãåŸæãªããã§ã¯ãããŸããã
ã»åã«åããŠç·Žç¿
ã»å±éãšåŸåŸ©ç·Žç¿
ã»èšèªåã®èšé²
ãã®3ã¹ããããéããŠãâæ £ãâãæ©ãæã«å ¥ããŠããŸãã
èªåãæèšã§ã¯ãªããæãèŠããã¿ã€ãã
ã§ãã仿ãã°ããããæé ãèªç¶ãšèžãã§ãããããããåŸæã«ãªã£ããã ãšå®æããŠããŸãã